Pattern of Elemental Release During the Granite Dissolution Can Be Changed by Aerobic Heterotrophic Bacterial Strains Isolated from Damma Glacier (Central Alps) Deglaciated Granite Sand
Colonisation and weathering of freshly deglaciated granite are key processes in initial soil formation and development. We have obtained 438 isolates from granite sand covering glacial toe, 284 isolates at 22°C and 154 at 4°C incubation temperatures, respectively, to obtain cultures for the investig...
Saved in:
Published in: | Microbial ecology Vol. 63; no. 4; pp. 865 - 882 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer Science + Business Media
01-05-2012
Springer-Verlag Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Colonisation and weathering of freshly deglaciated granite are key processes in initial soil formation and development. We have obtained 438 isolates from granite sand covering glacial toe, 284 isolates at 22°C and 154 at 4°C incubation temperatures, respectively, to obtain cultures for the investigation of their weathering capabilities under laboratory conditions. The isolation of bacteria from granite sand was performed on rich-, intermediate-and low-nutrientcontent solid media. Isolates were identified by 16S rRNA gene sequencing. According to the genera-associated weathering capabilities described in the literature and according to their abundance in our culture collection, we selected eight strains to analyse their effects on the weathering dynamics of granite sand during the batch culture experiment. Analysis of culturable bacteria showed higher species richness among isolates from 22°C than from 4°C incubations. In the R2A and 1/100 Ravan media, we observed the highest species richness of isolates obtained at 22°C and 4°C incubation temperatures, respectively. The obtained 16S rRNA sequences revealed the presence of alpha-, beta-and gamma-proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. The most numerous group of isolates was distantly related to Collimonas representatives, and according to the sequences of the 16S rRNA genes, they can form a new genus. Isolates from this group had the capability of causing increased dissolution rates for Fe, W, Ni and Rb. In general, at each sampling during the 30-day experiment, every strain showed a unique weathering profile resulting from differential rates of the dissolution and the precipitation of different minerals in the batch culture. Consequently, the presence of different strains, their growth stage and changes in proportions of strains in the bacterial community can affect further soil development and the successive colonisation by plants. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0095-3628 1432-184X |
DOI: | 10.1007/s00248-011-9976-7 |