Structural study and proton conductivity in BaCe0.7Zr0.25−xYxZn0.05O3 (x = 0.05, 0.1, 0.15, 0.2 & 0.25)

Solid oxide fuel cell (SOFC) has been considered to generate power represented by conductivity. Zinc doped Barium Cerium Zirconium Yttrium oxide (BCZYZn) has been found to offer high protonic conductivity and high stability as being electrolyte for proton-conducting SOFCs. In this study, we report a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 41; no. 27; pp. 11823 - 11831
Main Authors: Afif, Ahmed, Radenahmad, Nikdalila, Lim, Chee Ming, Petra, Mohamad Iskandar, Islam, Md. Aminul, Rahman, Seikh Mohammad Habibur, Eriksson, Sten, Azad, Abul Kalam
Format: Journal Article
Language:English
Published: Elsevier Ltd 20-07-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Solid oxide fuel cell (SOFC) has been considered to generate power represented by conductivity. Zinc doped Barium Cerium Zirconium Yttrium oxide (BCZYZn) has been found to offer high protonic conductivity and high stability as being electrolyte for proton-conducting SOFCs. In this study, we report a new series of proton conducting materials, BaCe0.7Zr0.25−xYxZn0.05O3 (x = 0.05, 0.1, 0.15, 0.2 and 0.25). The materials were synthesized by solid state reaction route and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermal expansion, particle size and impedance spectroscopy (IS). Rietveld analysis of the XRD data reveal a cubic perovskite structure with Pm-3m space group up to composition x = 0.15. For x = 0.15 and 0.20, the materials have structural phase change to orthorhombic in the Pbnm space group. Scanning electron microscopy images show high density materials. Thermal expansion measurements show that the thermal expansion coefficient is in the range 10.0–11.0 × 10−6/°C. Impedance spectroscopy shows higher ionic conduction under wet condition compared to dry condition. Y content of 25% (BCZYZn25) exhibits highest conductivity of 1.84 × 10−2 S/cm in wet Argon. This study indicated that perovskite electrolyte BCZYZn is promising material for the next generation of intermediate temperature solid oxide fuel cells (IT-SOFCs).
ISSN:0360-3199
1879-3487
DOI:10.1016/j.ijhydene.2016.02.135