Chronic low-frequency stimulation upregulates uncoupling protein-3 in transforming rat fast-twitch skeletal muscle

The purpose of this investigation was to examine the temporal changes in uncoupling protein (UCP)-3 expression, as well as related adaptive changes in mitochondrial density and fast-to-slow fiber type transitions during chronically enhanced contractile activity. We examined the effects of 1-42 days...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Regulatory, integrative and comparative physiology Vol. 287; no. 6; p. R1419
Main Authors: Putman, Charles T, Dixon, Walter T, Pearcey, Jean A, Maclean, Ian M, Jendral, Michelle J, Kiricsi, Mónika, Murdoch, Gordon K, Pette, Dirk
Format: Journal Article
Language:English
Published: United States 01-12-2004
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this investigation was to examine the temporal changes in uncoupling protein (UCP)-3 expression, as well as related adaptive changes in mitochondrial density and fast-to-slow fiber type transitions during chronically enhanced contractile activity. We examined the effects of 1-42 days of chronic low-frequency electrical stimulation (CLFS), applied to rat tibialis anterior (TA) for 10 h/day, on the expression of UCP-3 and concomitant changes in myosin heavy chain (MHC) protein expression and increases in oxidative capacity. UCP-3 protein content increased from 1 to 12 days, reaching 1.5-fold over control (P < 0.0005); it remained elevated for up to 42 days. In contrast, UCP-3 mRNA decreased in response to CLFS, reaching a level that was threefold lower than control (P < 0.0007). The activities of the mitochondrial reference enzymes citrate synthase (EC 4.1.3.7) and 3-hydroxyacyl-CoA-dehydrogenase (EC 1.1.1.35), which are known to increase in proportion to mitochondrial density, progressively increased up to an average of 2.3-fold (P < 0.00001). These changes were accompanied by fast-to-slow fiber type transitions, characterized by a shift in the pattern of MHC expression (P <0.0002): MHCI and MHCIIa expression increased by 1.7- and 4-fold, whereas MHCIIb displayed a 2.4-fold reduction. We conclude that absolute increases in UCP-3 protein content in the early adaptive phase were associated with the genesis of mitochondria containing a normal complement of UCP-3. However, during exposure to long-term CLFS, mitochondria were generated with a lower complement of UCP-3 and coincided with the emergence of a growing population of oxidative type IIA fibers.
ISSN:0363-6119
DOI:10.1152/ajpregu.00421.2004