Indirubin-3'-monoxime, a derivative of a Chinese antileukemia medicine, inhibits P-TEFb function and HIV-1 replication
To evaluate the effects of the cyclin dependent kinase (CDK) inhibitor Indirubin-3'-monoxime (IM) on Tat-mediated transactivation function, a step of the HIV-1 cycle that is not currently targeted in antiviral therapy. The effects of IM on CDK implicated in HIV-1 Tat transactivation function we...
Saved in:
Published in: | AIDS (London) Vol. 19; no. 18; pp. 2087 - 2095 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hagerstown, MD
Lippincott Williams & Wilkins
02-12-2005
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To evaluate the effects of the cyclin dependent kinase (CDK) inhibitor Indirubin-3'-monoxime (IM) on Tat-mediated transactivation function, a step of the HIV-1 cycle that is not currently targeted in antiviral therapy.
The effects of IM on CDK implicated in HIV-1 Tat transactivation function were evaluated by kinase assays, transfection experiments, RNase protection assay and RT-PCR analysis of viral transcripts. The antiviral effect of IM was investigated in cells from HIV-1 infected individuals as well as in cell lines, primary lymphocytes and monocyte-derived macrophages. The antiviral activity of IM was also tested against drug-resistant HIV-1.
IM inhibits the kinase activity of CDK9 [50% inhibitory concentration (IC50) of 0.05 microM], the catalytic subunit of Positive transcription elongation factor b (P-TEFb). Inhibition of CDK9 activity by IM results in abrogation of Tat-induced expression of HIV-1 RNA in cell lines. In addition, IM inhibits the replication of HIV-1 in both peripheral blood mononuclear cells (IC50 of 1 microM) and macrophages (IC50 of 0.5 microM). IM is effective against primary and drug-resistant strains of HIV-1. Importantly, the antiviral effects of the drug were seen at concentrations that did not affect cell proliferation.
Non-toxic concentrations of IM inhibit HIV-1 by blocking viral gene expression mediated by the cellular factor P-TEFb. The drug is effective against wild-type and drug-resistant strains of HIV-1. IM may help control replication of HIV-1 in patients by disrupting a step of the HIV-1 cycle that is not being targeted in current antiretroviral treatments. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0269-9370 1473-5571 |
DOI: | 10.1097/01.aids.0000194805.74293.11 |