Troposphere-stratosphere interactions in a one-dimensional model of Jovian photochemistry
A simple one-dimensional model of the Jovian atmosphere including the coupling between a rapidly mixed troposphere and a stagnant stratosphere is presented. We treat analytically the case of a chemically unreactive species flowing downward through the stratosphere and troposphere with a constant flu...
Saved in:
Published in: | Icarus (New York, N.Y. 1962) Vol. 89; p. 377 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-02-1991
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple one-dimensional model of the Jovian atmosphere including the coupling between a rapidly mixed troposphere and a stagnant stratosphere is presented. We treat analytically the case of a chemically unreactive species flowing downward through the stratosphere and troposphere with a constant flux. The calculated concentration profile has a maximum value approximately one atmospheric scale height above the tropopause. The corresponding mixing ratio rapidly decreases in the lower stratosphere. The contrast between the peak stratosphere and tropopause concentrations reflects the variation between the lower stratosphere and upper troposphere eddy diffusion coefficients. Numerical simulations of unreactive CO and C2H6, considering high-altitude photochemical sources (yielding downward fluxes to the troposphere) and deep troposphere thermochemical sources, demonstrate that upper troposphere abundances may have a large photochemical contribution. Recent observations of CO near 5 bar can be reproduced by a model using any one of three different tropospheric eddy diffusion profiles: a constant value of approximately 10(8) cm2 sec-1, a constant value of < or approximately 10(4) cm2 sec-1, or a two-layer model with a rapidly mixed (10(8) cm2 sec-1) layer below 20 bar and a slower mixing layer (10(4) cm2 sec-1) between 100 mbar and 20 bar. In the latter two scenarios, the photochemical source is an important and/or dominant source of upper tropospheric CO. However, the upper tropospheric C2H6 abundances are distinctly different among the three cases. These calculations suggest objectives for higher spectral resolution observations, critical vertical scales for planning experiments on future missions to Jupiter, and predictions that can be tested with the Galileo probe mass spectrometer. |
---|---|
ISSN: | 0019-1035 |
DOI: | 10.1016/0019-1035(91)90184-U |