Stochastic data assimilation of the random shallow water model loads with uncertain experimental measurements
This paper is concerned with the estimation of a parametric probabilistic model of the random displacement source field at the origin of seaquakes in a given region. The observation of the physical effects induced by statistically independent realizations of the seaquake random process is inherent w...
Saved in:
Published in: | Computational mechanics Vol. 47; no. 6; pp. 603 - 616 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer-Verlag
01-06-2011
Springer Springer Nature B.V Springer Verlag |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper is concerned with the estimation of a parametric probabilistic model of the random displacement source field at the origin of seaquakes in a given region. The observation of the physical effects induced by statistically independent realizations of the seaquake random process is inherent with uncertainty in the measurements and a stochastic inverse method is proposed to identify each realization of the source field. A statistical reduction is performed to drastically lower the dimension of the space in which the random field is sought and one is left with a random vector to identify. An approximation of the vector components is determined using a polynomial chaos decomposition, solution of an optimality system to identify an optimal representation. A second order gradient-based optimization technique is used to efficiently estimate this statistical representation of the unknown source while accounting for the non-linear constraints in the model parameters. This methodology allows the uncertainty associated with the estimates to be quantified and avoids the need for repeatedly solving the forward model. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0178-7675 1432-0924 |
DOI: | 10.1007/s00466-010-0560-7 |