Osteogenic differentiation of encapsulated rat mesenchymal stem cells inside a rotating microgravity bioreactor: in vitro and in vivo evaluation
The objective of this study is to evaluate the in vitro and in vivo osteogenic potential of rat bone marrow mesenchymal stem cells (BM-MSCs) using chitosan/hydroxyapatite (C/HAp) microbeads as encapsulation matrix under osteoinductive medium and dynamic culture conditions. The degradation characteri...
Saved in:
Published in: | Cytotechnology (Dordrecht) Vol. 70; no. 5; pp. 1375 - 1388 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
01-10-2018
Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study is to evaluate the in vitro and in vivo osteogenic potential of rat bone marrow mesenchymal stem cells (BM-MSCs) using chitosan/hydroxyapatite (C/HAp) microbeads as encapsulation matrix under osteoinductive medium and dynamic culture conditions. The degradation characteristics of C/HAp microbeads were evaluated under in vitro and in vivo conditions for 180 days. BM-MSCs were encapsulated in C/HAp microbeads with > 85% viability, and were cultured in a slow turning lateral vessel-type rotating bioreactor simulating microgravity conditions for 28 days, under the effect of osteogenic inducers. MTT assay showed that the metabolic activity of encapsulated cells was preserved > 80% after a week. In vitro experiments confirmed that the encapsulated BM-MSCs differentiated into osteoblastic cells, formed bone-like tissue under osteogenic microgravity bioreactor conditions. Preliminary in vivo study indicated C/HAp microbeads containing BM-MSCs were able to repair the surgically-created small bone defects in the rat femur. BM-MSCs-C/HAp composite microbeads may have potential for modular bone regeneration. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0920-9069 1573-0778 |
DOI: | 10.1007/s10616-018-0230-8 |