ROCK-Generated Contractility Regulates Breast Epithelial Cell Differentiation in Response to the Physical Properties of a Three-Dimensional Collagen Matrix
Breast epithelial cells differentiate into tubules when cultured in floating three-dimensional (3D) collagen gels, but not when the cells are cultured in the same collagen matrix that is attached to the culture dish. These observations suggest that the biophysical properties of collagenous matrices...
Saved in:
Published in: | The Journal of cell biology Vol. 163; no. 3; pp. 583 - 595 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Rockefeller University Press
10-11-2003
The Rockefeller University Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Breast epithelial cells differentiate into tubules when cultured in floating three-dimensional (3D) collagen gels, but not when the cells are cultured in the same collagen matrix that is attached to the culture dish. These observations suggest that the biophysical properties of collagenous matrices regulate epithelial differentiation, but the mechanism by which this occurs is unknown. Tubulogenesis required the contraction of floating collagen gels through Rho and ROCK-mediated contractility. ROCK-mediated contractility diminished Rho activity in a floating 3D collagen gel, and corresponded to a loss of FAK phosphorylated at Y397 localized to 3D matrix adhesions. Increasing the density of floating 3D collagen gels also disrupted tubulogenesis, promoted FAK phosphorylation, and sustained high Rho activity. These data demonstrate the novel finding that breast epithelial cells sense the rigidity or density of their environment via ROCK-mediated contractility and a subsequent down-regulation of Rho and FAK function, which is necessary for breast epithelial tubulogenesis to occur. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Abbreviations used in this paper: 2D, two-dimensional; 3D, three-dimensional; FAK, focal adhesion kinase; FAK pY397, FAK phosphorylated on tyrosine 397; HGF, hepatocyte growth factor; MLC, myosin light chain; MLCK, MLC kinase; ROCK, Rho kinase. Address correspondence to Patricia J. Keely, Department of Pharmacology, University of Wisconsin, 3630 MSC, 1300 University Ave., Madison, WI 53706. Tel.: (608) 265-2398. Fax: (608) 262-1257. email: pjkeely@facstaff.wisc.edu |
ISSN: | 0021-9525 1540-8140 |
DOI: | 10.1083/jcb.200305010 |