T cell receptor cross-reactivity expanded by dramatic peptide–MHC adaptability
T cell receptor cross-reactivity allows a fixed T cell repertoire to respond to a much larger universe of potential antigens. Recent work has emphasized the importance of peptide structural and chemical homology, as opposed to sequence similarity, in T cell receptor cross-reactivity. Surprisingly, t...
Saved in:
Published in: | Nature chemical biology Vol. 14; no. 10; pp. 934 - 942 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Nature Publishing Group US
01-10-2018
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | T cell receptor cross-reactivity allows a fixed T cell repertoire to respond to a much larger universe of potential antigens. Recent work has emphasized the importance of peptide structural and chemical homology, as opposed to sequence similarity, in T cell receptor cross-reactivity. Surprisingly, though, T cell receptors can also cross-react between ligands with little physiochemical commonalities. Studying the clinically relevant receptor DMF5, we demonstrate that cross-recognition of such divergent antigens can occur through mechanisms that involve heretofore unanticipated rearrangements in the peptide and presenting MHC protein, including binding-induced peptide register shifts and extensions from MHC peptide binding grooves. Moreover, cross-reactivity can proceed even when such dramatic rearrangements do not translate into structural or chemical molecular mimicry. Beyond demonstrating new principles of T cell receptor cross-reactivity, our results have implications for efforts to predict and control T cell specificity and cross-reactivity and highlight challenges associated with predicting T cell reactivities.
Structural analysis shows that cross-reactivity of the T cell receptor DMF5 is governed by adaptability of the peptide antigen, which can undergo TCR-binding-induced frameshifting forcing the peptide C terminus to extend from the MHC-binding groove. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 NIHOTHER Modeling, crystallographic, and TCR binding experiments were performed by T.P.R., L.M.H., and J.A.A. C.W.V.K assisted with crystallographic data collection and analysis. Thermal stability experiments were performed by T.P.R. and L.M.H. Functional experiments were performed by L.M.H. with assistance from K.C.F. in T cell transduction. Data analysis was performed by T.P.R., L.M.H., M.H.G., J.L.M., J.A.A., and C.W.V.K. The manuscript was drafted and edited by T.P.R., M.H.G., J.L.M., and B.M.B. The project was conceptualized by T.P.R., K.C.G., and B.M.B. Personnel were supervised by M.I.N., K.C.G., and B.M.B. Author contributions |
ISSN: | 1552-4450 1552-4469 |
DOI: | 10.1038/s41589-018-0130-4 |