Dexamethasone causes translocation of glucose transporters from the plasma membrane to an intracellular site in human fibroblasts

To investigate the mechanism by which glucocorticoids inhibit glucose transport in peripheral tissues, we have used a monoclonal antibody directed against the human glucose transporter to measure the relative amounts of glucose transporter polypeptide in various cell fractions of human foreskin fibr...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 262; no. 36; pp. 17696 - 17702
Main Authors: Horner, H C, Munck, A, Lienhard, G E
Format: Journal Article
Language:English
Published: Bethesda, MD Elsevier Inc 25-12-1987
American Society for Biochemistry and Molecular Biology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the mechanism by which glucocorticoids inhibit glucose transport in peripheral tissues, we have used a monoclonal antibody directed against the human glucose transporter to measure the relative amounts of glucose transporter polypeptide in various cell fractions of human foreskin fibroblasts after treatment with and without dexamethasone. In cells treated for 4 h with 100 nM dexamethasone, a decrease of 48% in glucose transport was accompanied by a decrease of 40% in the amount of glucose transporter polypeptide in a plasma membrane fraction enriched 10-fold in 5′-nucleotidase activity and a 78% increase in the amount of transporter polypeptide in a fraction of putative intracellular membranes, designated P2. There was no significant change in the amount of transporter polypeptide in whole cell lysates. Insulin (200 nM) stimulated glucose transport in basal fibroblasts by only 9%. However, addition of insulin for 30 min to cells that had been treated for 4 h with dexamethasone completely reversed the dexamethasone-induced decrease in glucose transport and also reversed the dexamethasone-induced changes in glucose transporter polypeptide content of the plasma membrane and P2 fractions. From these observations we conclude that dexamethasone decreases glucose transport by causing translocation of glucose transporters from the plasma membrane to an internal location and that insulin reverses the dexamethasone effect by reversing the translocation.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)45435-X