Star cluster ecology — IV. Dissection of an open star cluster: photometry
The evolution of star clusters is studied using N-body simulations in which the evolution of single stars and binaries is taken self-consistently into account. Initial conditions are chosen to represent relatively young Galactic open clusters, such as the Pleiades, Praesepe and the Hyades. The calcu...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society Vol. 321; no. 2; pp. 199 - 226 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Science Ltd
21-02-2001
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The evolution of star clusters is studied using N-body simulations in which the evolution of single stars and binaries is taken self-consistently into account. Initial conditions are chosen to represent relatively young Galactic open clusters, such as the Pleiades, Praesepe and the Hyades. The calculations include a realistic mass function, primordial binaries and the external potential of the parent Galaxy. Our model clusters are generally significantly flattened by the Galactic tidal field, and dissolve before deep core collapse occurs. The binary fraction decreases initially because of the destruction of soft binaries, but increases later because lower mass single stars escape more easily than the more massive binaries. At late times, the cluster core is quite rich in giants and white dwarfs. There is no evidence for preferential evaporation of old white dwarfs. On the contrary, the white dwarfs formed are likely to remain in the cluster. Stars tend to escape from the cluster through the first and second Lagrange points, in the direction of and away from the Galactic Centre. Mass segregation manifests itself in our models well within an initial relaxation time. As expected, giants and white dwarfs are much more strongly affected by mass segregation than main-sequence stars. Open clusters are dynamically rather inactive. However, the combined effects of stellar mass-loss and evaporation of stars from the cluster potential drive the dissolution of a cluster on a much shorter time-scale than if these effects are neglected. The often-used argument that a star cluster is barely older than its relaxation time and therefore cannot be dynamically evolved is clearly in error for the majority of star clusters. An observation of a blue straggler in an eccentric orbit around an unevolved star or a blue straggler of more than twice the turn-off mass might indicate past dynamical activity. We find two distinct populations of blue stragglers: those formed above the main-sequence turn-off, and those which appear as blue stragglers as the cluster's turn-off drops below the mass of the rejuvenated star. |
---|---|
Bibliography: | istex:6F23C05616452135B27DC7B28B5E8002C7C4C354 ark:/67375/HXZ-23CTGK9X-2 Hubble Fellow. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1046/j.1365-8711.2001.03976.x |