A multimodal tactile dataset for dynamic texture classification

Reproducing human-like dexterous manipulation in robots requires identifying objects and textures. In unstructured settings, robots equipped with tactile sensors may detect textures by using touch-related characteristics. An extensive dataset of the physical interaction between a tactile-enable robo...

Full description

Saved in:
Bibliographic Details
Published in:Data in brief Vol. 50; p. 109590
Main Authors: Monteiro Rocha Lima, Bruno, Danyamraju, Venkata Naga Sai Siddhartha, Alves de Oliveira, Thiago Eustaquio, Prado da Fonseca, Vinicius
Format: Journal Article
Language:English
Published: Elsevier Inc 01-10-2023
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Reproducing human-like dexterous manipulation in robots requires identifying objects and textures. In unstructured settings, robots equipped with tactile sensors may detect textures by using touch-related characteristics. An extensive dataset of the physical interaction between a tactile-enable robotic probe is required to investigate and develop methods for categorizing textures. Therefore, this motivates us to compose a dataset from the signals of a bioinspired multimodal tactile sensing module while a robotic probe brings the module to dynamically contact 12 tactile textures under three exploratory velocities. This dataset contains pressure, acceleration, angular rate, and magnetic field variation signals from sensors embedded in the compliant structure of the sensing module. The pressure signals were sampled at 350 Hz, while the signals of the other sensors were sampled at 1500 Hz. Each texture was explored 100 times for each exploratory velocity, and each exploratory episode consisted of a sliding motion in the x and y directions tangential to the surface where the texture is placed. The total number of exploratory episodes in the dataset is 3600. The tactile texture dataset can be used for any project in the area of object recognition and robotic manipulation, and it is especially well suited for tactile texture reconstruction and recognition tasks. The dataset can also be used to study anisotropic textures and how robotic tactile exploration has to consider sliding motion directions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2352-3409
2352-3409
DOI:10.1016/j.dib.2023.109590