Heterogeneous Immunolocalisation of Zinc Transporters ZIP6, ZIP10 and ZIP14 in Human Normo- and Asthenozoospermic Spermatozoa
Zinc (in the form of Zn2+) is necessary for male fertility. Both Zn2+ quantity and its localisation have been detected in seminal plasma and ejaculated spermatozoa, suggesting its active uptake via zinc import transporters (ZIPs). Immunofluorescence was used to characterise the expression and locali...
Saved in:
Published in: | Current issues in molecular biology Vol. 44; no. 8; pp. 3444 - 3454 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
MDPI
31-07-2022
MDPI AG |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Zinc (in the form of Zn2+) is necessary for male fertility. Both Zn2+ quantity and its localisation have been detected in seminal plasma and ejaculated spermatozoa, suggesting its active uptake via zinc import transporters (ZIPs). Immunofluorescence was used to characterise the expression and localisation of three distinct types of ZIP transporters in ejaculated spermatozoa of normo- and asthenozoospermic sperm samples. ZIP6, ZIP10 and ZIP14 showed heterogeneous sperm cell expression and different compartmental distribution. In both types of sperm samples, ZIP6 and ZIP14 were predominantly localised in the sperm head, while ZIP10 was found along the sperm tail. Compartmental localisation of ZIPs in asthenozoospermia was not changed. However, regarding sub-compartmental localisation in sperm head regions, for ZIP6 asthenozoospermia only decreased its acorn/crescent-like pattern. In contrast, ZIP14 immunostaining was altered in favour of crescent-like, as opposed to acorn-like and acorn/crescent-like patterns. The specific ZIPs localisation may reflect their different roles in sperm cell integrity and motility and may change over time. This is the first report of their specific compartmental and sub-compartmental localisation in ejaculated human sperm cells. Further research will lead to a greater understanding of the roles of ZIPs in sperm cell biology, which could positively influence procedures for human infertility therapy. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1467-3045 1467-3037 1467-3045 |
DOI: | 10.3390/cimb44080237 |