Hypoxic induction of vasculogenic mimicry in hepatocellular carcinoma: role of HIF-1 α, RhoA/ROCK and Rac1/PAK signaling
Vasculogenic mimicry (VM), defined as a capability of aggressive tumor Cells to mimic embryonic vasculogenic networks, caused poor prognosis in hepatocellular carcinoma (HCC). Rho kinases (ROCK), p21-activated kinase (PAK), hypoxia or epithelial-mesenchymal transition (EMT) contributed to the VM pot...
Saved in:
Published in: | BMC cancer Vol. 20; no. 1; p. 32 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
BioMed Central
13-01-2020
BMC |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Vasculogenic mimicry (VM), defined as a capability of aggressive tumor Cells to mimic embryonic vasculogenic networks, caused poor prognosis in hepatocellular carcinoma (HCC). Rho kinases (ROCK), p21-activated kinase (PAK), hypoxia or epithelial-mesenchymal transition (EMT) contributed to the VM potential. However, the details underlying these biological behaviors have not been completely elucidated.
Kaplan-Meier analysis was conducted to predict relationship with hypoxia Inducible factor (HIF-1α), EMT related markers: Vimentin and patient prognosis. CD34/periodic acid-Schiff (PAS) double staining was examined to differentiate VM-positive (VM+) and VM-negative (VM-) samples. Cells were cultured under controlled hypoxic environments (1% O2) or normoxic conditions. The effect of hypoxia on RhoA/ROCK, Rac1/PAK and EMT were evaluated by real time-qPCR and western blot. HIF-1α small interfering RNA (siRNA), overexpressed or short hairpin RNA (shRNA) of ROCK and kinase inhibitors were used to explore the effect of HIF-1α, RhoA/ROCK, Rac1/PAK and Vimentin on VM.
HIF-1α or Vimentin was upregulated in VM+ HCC tissues, compared to non-cancerous tissues (P < 0.01), and patients with high expression of HIF-1α or Vimentin had worse prognosis (P < 0.001). We showed hypoxia induced RhoA/ROCK and Rac1/PAK signaling transduction, and EMT could be repressed by HIF-1α siRNA. Notably, RhoA/ROCK or Rac1/PAK stabilized HIF-1α in hypoxia, whereas HIF-1α did not significantly altered RhoA/ROCK or Rac1/PAK signaling in hypoxia. Moreover, we found distinct roles of ROCK1, ROCK2 and PAK in regulating Vimentin phosphorylation.
RhoA/ROCK and Rac/PAK signaling played crucial roles in hypoxia-induced VM via Ser72 and Ser56 Vimentin phosphorylation in HCC. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1471-2407 1471-2407 |
DOI: | 10.1186/s12885-019-6501-8 |