Synthesis of Carbohydrate Based Macrolactones and Their Applications as Receptors for Ion Recognition and Catalysis

Glycomacrolactones exhibit many interesting biological properties, and they are also important in molecular recognitions and for supramolecular chemistry. Therefore, it is important to be able to access glycomacrocycles with different sizes and functionality. A new series of carbohydrate-based macro...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 26; no. 11; p. 3394
Main Authors: Adhikari, Surya B, Chen, Anji, Wang, Guijun
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 03-06-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glycomacrolactones exhibit many interesting biological properties, and they are also important in molecular recognitions and for supramolecular chemistry. Therefore, it is important to be able to access glycomacrocycles with different sizes and functionality. A new series of carbohydrate-based macrocycles containing triazole and lactone moieties have been designed and synthesized. The synthesis features an intramolecular nucleophilic substitution reaction for the macrocyclization step. In this article, the effect of some common sulfonate leaving groups is evaluated for macrolactonization. Using tosylate gave good selectivity for monolactonization products with good yields. Fourteen different macrocycles have been synthesized and characterized, of which eleven macrocycles are from cyclization of the C1 to C6 positions of -acetyl D-glucosamine derivatives and three others from C2 to C6 cyclization of functionalized D-glucosamine derivatives. These novel macrolactones have unique structures and demonstrate interesting anion binding properties, especially for chloride. The macrocycles containing two triazoles form complexes with copper sulfate, and they are effective ligands for copper sulfate mediated azide-alkyne cycloaddition reactions (CuAAC). In addition, several macrocycles show some selectivity for different alkynes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26113394