Multi-Armed 1,2,3-Selenadiazole and 1,2,3-Thiadiazole Benzene Derivatives as Novel Glyoxalase-I Inhibitors
Glyoxalase-I (Glo-I) enzyme was established to be a valid target for anticancer drug design. It performs the essential detoxification step of harmful byproducts, especially methylglyoxal. A robust computer-aided drug design approach was used to design and validate a series of compounds with selenium...
Saved in:
Published in: | Molecules (Basel, Switzerland) Vol. 24; no. 18; p. 3210 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
04-09-2019
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Glyoxalase-I (Glo-I) enzyme was established to be a valid target for anticancer drug design. It performs the essential detoxification step of harmful byproducts, especially methylglyoxal. A robust computer-aided drug design approach was used to design and validate a series of compounds with selenium or sulfur based heterorings. A series of in-house multi-armed 1,2,3-selenadiazole and 1,2,3-thiadiazole benzene derivatives were tested for their Glo-I inhibitory activity. Results showed that these compounds bind Glo-I active sites competitively with strong potential to inhibit this enzyme with IC
values in micro-molar concentration. Docking poses revealed that these compounds interact with the zinc atom at the bottom of the active site, which plays an essential role in its viability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules24183210 |