Polymers and Biomaterials for Posterior Lamella of the Eyelid and the Lacrimal System
The application of biopolymers in the reconstruction of the posterior lamella of the eyelid and the lacrimal system marks a significant fusion of biomaterial science with clinical advancements. This review assimilates research spanning 2015 to 2023 to provide a detailed examination of the role of bi...
Saved in:
Published in: | Polymers Vol. 16; no. 3; p. 352 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
01-01-2024
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The application of biopolymers in the reconstruction of the posterior lamella of the eyelid and the lacrimal system marks a significant fusion of biomaterial science with clinical advancements. This review assimilates research spanning 2015 to 2023 to provide a detailed examination of the role of biopolymers in reconstructing the posterior lamella of the eyelid and the lacrimal system. It covers the anatomy and pathophysiology of eyelid structures, the challenges of reconstruction, and the nuances of surgical intervention. This article progresses to evaluate the current gold standards, alternative options, and the desirable properties of biopolymers used in these intricate procedures. It underscores the advancements in the field, from decellularized grafts and acellular matrices to innovative natural and synthetic polymers, and explores their applications in lacrimal gland tissue engineering, including the promise of 3D bioprinting technologies. This review highlights the importance of multidisciplinary collaboration between material scientists and clinicians in enhancing surgical outcomes and patient quality of life, emphasizing that such cooperation is pivotal for translating benchtop research into bedside applications. This collaborative effort is vital for restoring aesthetics and functionality for patients afflicted with disfiguring eyelid diseases, ultimately aiming to bridge the gap between innovative materials and their clinical translation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym16030352 |