Nanoparticle/Metal-Organic Framework Composites for Catalytic Applications: Current Status and Perspective

Nanoparticle/metal-organic frameworks (MOF) based composites have recently attracted significant attention as a new class of catalysts. Such composites possess the unique features of MOFs (including clearly defined crystal structure, high surface area, single site catalyst, special confined nanopore...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 22; no. 12; p. 2103
Main Authors: Xiang, Wenlong, Zhang, Yueping, Lin, Hongfei, Liu, Chang-Jun
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 30-11-2017
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoparticle/metal-organic frameworks (MOF) based composites have recently attracted significant attention as a new class of catalysts. Such composites possess the unique features of MOFs (including clearly defined crystal structure, high surface area, single site catalyst, special confined nanopore, tunable, and uniform pore structure), but avoid some intrinsic weaknesses (like limited electrical conductivity and lack in the "conventional" catalytically active sites). This review summarizes the developed strategies for the fabrication of nanoparticle/MOF composites for catalyst uses, including the strategy using MOFs as host materials to hold and stabilize the guest nanoparticles, the strategy with subsequent MOF growth/assembly around pre-synthesized nanoparticles and the strategy mixing the precursors of NPs and MOFs together, followed by self-assembly process or post-treatment or post-modification. The applications of nanoparticle/MOF composites for CO oxidation, CO₂ conversion, hydrogen production, organic transformations, and degradation of pollutants have been discussed. Superior catalytic performances in these reactions have been demonstrated. Challenges and future developments are finally addressed.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules22122103