Simultaneous Determination of Caffeine and Paracetamol in Commercial Formulations Using Greener Normal-Phase and Reversed-Phase HPTLC Methods: A Contrast of Validation Parameters

There has been no assessment of the greenness of the described analytical techniques for the simultaneous determination (SMD) of caffeine and paracetamol. As a result, in comparison to the greener normal-phase high-performance thin-layer chromatography (HPTLC) technique, this research was conducted...

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Vol. 27; no. 2; p. 405
Main Authors: Alam, Prawez, Shakeel, Faiyaz, Ali, Abuzer, Alqarni, Mohammed H, Foudah, Ahmed I, Aljarba, Tariq M, Alkholifi, Faisal K, Alshehri, Sultan, Ghoneim, Mohammed M, Ali, Amena
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 09-01-2022
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There has been no assessment of the greenness of the described analytical techniques for the simultaneous determination (SMD) of caffeine and paracetamol. As a result, in comparison to the greener normal-phase high-performance thin-layer chromatography (HPTLC) technique, this research was conducted to develop a rapid, sensitive, and greener reversed-phase HPTLC approach for the SMD of caffeine and paracetamol in commercial formulations. The greenness of both techniques was calculated using the AGREE method. For the SMD of caffeine and paracetamol, the greener normal-phase and reversed-phase HPTLC methods were linear in the 50-500 ng/band and 25-800 ng/band ranges, respectively. For the SMD of caffeine and paracetamol, the greener reversed-phase HPTLC approach was more sensitive, accurate, precise, and robust than the greener normal-phase HPTLC technique. For the SMD of caffeine paracetamol in commercial PANEXT and SAFEXT tablets, the greener reversed-phase HPTLC technique was superior to the greener normal-phase HPTLC approach. The AGREE scores for the greener normal-phase and reversed-phase HPTLC approaches were estimated as 0.81 and 0.83, respectively, indicated excellent greenness profiles for both analytical approaches. The greener reversed-phase HPTLC approach is judged superior to the greener normal-phase HPTLC approach based on numerous validation parameters and pharmaceutical assays.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27020405