Characterization of microbial current production as a function of microbe―electrode-interaction

Microbe-electrode-interactions are keys for microbial fuel cell technology. Nevertheless, standard measurement routines to analyze the interplay of microbial physiology and material characteristics have not been introduced yet. In this study, graphite anodes with varying surface properties were eval...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology Vol. 157; pp. 284 - 292
Main Authors: DOLCH, Kerstin, DANZER, Joana, KABBECK, Tobias, BIERER, Benedikt, ERBEN, Johannes, FÖRSTER, Andreas H, MAISCH, Jan, NICK, Peter, KERZENMACHER, Sven, GESCHER, Johannes
Format: Journal Article
Language:English
Published: Kidlington Elsevier 01-04-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbe-electrode-interactions are keys for microbial fuel cell technology. Nevertheless, standard measurement routines to analyze the interplay of microbial physiology and material characteristics have not been introduced yet. In this study, graphite anodes with varying surface properties were evaluated using pure cultures of Shewanella oneidensis and Geobacter sulfurreducens, as well as defined and undefined mixed cultures. The evaluation routine consisted of a galvanostatic period, a current sweep and an evaluation of population density. The results show that surface area correlates only to a certain extent with population density and anode performance. Furthermore, the study highlights a strain-specific microbe-electrode-interaction, which is affected by the introduction of another microorganism. Moreover, evidence is provided for the possibility of translating results from pure culture to undefined mixed species experiments. This is the first study on microbe-electrode-interaction that systematically integrates and compares electrochemical and biological data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2014.01.112