Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake
The velamen radicum, a spongy, usually multiple epidermis of the roots, which at maturity consists of dead cells, is frequently described as an important adaptation of epiphytic orchids. Yet, quantitative evidence for the alleged functions, e.g., efficient water and nutrient uptake, nutrient retenti...
Saved in:
Published in: | Oecologia Vol. 171; no. 3; pp. 733 - 741 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Berlin/Heidelberg
Springer
01-03-2013
Springer-Verlag Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The velamen radicum, a spongy, usually multiple epidermis of the roots, which at maturity consists of dead cells, is frequently described as an important adaptation of epiphytic orchids. Yet, quantitative evidence for the alleged functions, e.g., efficient water and nutrient uptake, nutrient retention, reduction of water loss, mechanical protection, or the avoidance of overheating, is rare or missing. We tested the notion originally put forward by Went in 1940 that the velamen allows plants to capture and immobilize the first solutions arriving in a rainfall, which are the most heavily charged with nutrients. In a series of experiments, we examined whether all necessary functional characteristics are given for this scenario to be realistic under ecological conditions. First, we show that the velamen of a large number of orchid species takes up solutions within seconds, while evaporation from the velamen takes several hours. Charged ions are retained in the velamen probably due to positive and negative charges in the cell walls, while uncharged compounds are lost to the external medium. Finally, we demonstrate that nutrient uptake follows biphasic kinetics with a highly efficient, active transport system at low external concentrations. Thus, our results lend strong support to Went's hypothesis: the velamen fulfills an important function in nutrient uptake in the epiphytic habitat. Most of the other functions outlined above still await similar experimental scrutiny. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0029-8549 1432-1939 |
DOI: | 10.1007/s00442-012-2575-6 |