Design and evaluation of micellar nanocarriers for 17-allyamino-17-demethoxygeldanamycin (17-AAG)
17-Allyamino-17-demethoxygeldanamycin (17-AAG) is a potent anticancer agent currently undergoing phases I and II clinical trials. However, the clinical development of 17-AAG has been hindered by its poor aqueous solubility and hepatotoxicity. This study aimed to devise novel micellar nanocarriers fo...
Saved in:
Published in: | International journal of pharmaceutics Vol. 392; no. 1; pp. 170 - 177 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
15-06-2010
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | 17-Allyamino-17-demethoxygeldanamycin (17-AAG) is a potent anticancer agent currently undergoing phases I and II clinical trials. However, the clinical development of 17-AAG has been hindered by its poor aqueous solubility and hepatotoxicity. This study aimed to devise novel micellar nanocarriers for 17-AAG that improve its solubility and retain the incorporated drug for a prolonged period of time. We have found that 1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-
N-[methoxy(polyethylene glycol)-2000]/
d-α-tocopheryl polyethylene glycol 1000 (PEG-DSPE/TPGS) mixed micelles (at a 1:2 molar ratio) can deliver 17-AAG at clinically relevant doses. By modulating the concentrations of micelle-forming copolymers, the burst release of 17-AAG from PEG-DSPE/TPGS mixed micelles was substantially reduced with a release half-life up to about 8
h. Our
1H NMR spectroscopy results revealed that the incorporation of TPGS into PEG-DSPE micelles restricted internal molecular motions of copolymers in both the corona and core regions of the micelles, leading to the delayed drug release. Cytotoxicity of 17-AAG formulated in PEG-DSPE/TPGS mixed micelles against human ovarian cancer SKOV-3 cells was comparable to that of free 17-AAG. 17-AAG-loaded PEG-DSPE/TPGS mixed micelles may offer a promising alternative to the current 17-AAG formulations for the treatment of solid tumors. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2010.03.056 |