Using U-Net convolutional neural network to model pixel-based electrostatic potential distributions in GaN power MIS-HEMTs
This study demonstrates a novel use of the U-Net convolutional neural network (CNN) for modeling pixel-based electrostatic potential distributions in GaN metal–insulator-semiconductor high-electron mobility transistors (MIS-HEMTs) with various gate and source field plate designs and drain voltages....
Saved in:
Published in: | Scientific reports Vol. 14; no. 1; p. 8151 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
08-04-2024
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study demonstrates a novel use of the U-Net convolutional neural network (CNN) for modeling pixel-based electrostatic potential distributions in GaN metal–insulator-semiconductor high-electron mobility transistors (MIS-HEMTs) with various gate and source field plate designs and drain voltages. The pixel-based images of the potential distribution are successfully modeled from the developed U-Net CNN with an error of less than 1% error relative to a TCAD simulated reference of a 500-V electrostatic potential distribution in the AlGaN/GaN interface. Furthermore, the modeling time of potential distributions by U-Net takes about 80 ms. Therefore, the U-Net CNN is a promising approach to efficiently model the pixel-based distributions characteristics in GaN power devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-58112-9 |