Master curve approach to axial stiffness calculation for non-crimp fabric biaxial composites with out-of-plane waviness
The effect of 0°-tow out-of-plane waviness on the biaxial non-crimp-fabric (NCF) composite axial stiffness is investigated. Homogenizing, the bundle mesostructure of the NCF composite is replaced by layers. Then the composite is represented by a laminate with flat layers with effective stiffness pro...
Saved in:
Published in: | Composites. Part B, Engineering Vol. 64; pp. 214 - 221 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-08-2014
Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effect of 0°-tow out-of-plane waviness on the biaxial non-crimp-fabric (NCF) composite axial stiffness is investigated. Homogenizing, the bundle mesostructure of the NCF composite is replaced by layers. Then the composite is represented by a laminate with flat layers with effective stiffness properties representing the curved 0°-layer and the 90°-layer with varying thickness. It is shown that the NCF composite knock-down factor characterizing the stiffness degradation has almost the same dependence on wave parameters as the knock-down factor for the curved 0°-layer. Numerical analysis showed that 90°-layer knock-down factor versus amplitude curves for different wavelength can be reduced to one master curve which can be described by a one-parameter expression with the parameter dependent on the used material. This observation is used to obtain high accuracy for analytical predictions for knock-down factors for cases with different wavelength and amplitudes based on two FE calculations only. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1359-8368 1879-1069 1879-1069 |
DOI: | 10.1016/j.compositesb.2014.04.023 |