Selection of the Internal Control Gene for Real-Time Quantitative RT-PCR Assays in Temperature Treated Leptospira
Analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. To avoid bias, real-time RT-PCR is referred to one or several internal control genes. Here, we sought to identify a gene to be used as normalizer by analyzing three functional distinct...
Saved in:
Published in: | Current microbiology Vol. 56; no. 6; pp. 539 - 546 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
New York : Springer-Verlag
01-06-2008
Springer-Verlag Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Analysis of gene expression requires sensitive, precise, and reproducible measurements for specific mRNA sequences. To avoid bias, real-time RT-PCR is referred to one or several internal control genes. Here, we sought to identify a gene to be used as normalizer by analyzing three functional distinct housekeeping genes (lipL41, flaB, and 16S rRNA) for their expression level and stability in temperature treated Leptospira cultures. Leptospira interrogans serovar Hardjo subtype Hardjoprajitno was cultured at 30°C for 7 days until a density of 10⁶ cells/ml was reached and then shifted to physiological temperatures (37°C and 42°C) and to environmental temperatures (25°C and 30°C) during a 24 h period. cDNA was amplified by quantitative PCR using SYBR Green I technology and gene-specific primers for lipL41, flaB, and 16S rRNA. Expression stability (M) was assessed by geNorm and Normfinder v.18. 16S rRNA registered an average expression stability of M = 1.1816, followed by flaB (M = 1.682) and lipL41 (M = 1.763). 16S rRNA was identified as the most stable gene and can be used as a normalizer, as it showed greater expression stability than lipL41 and flaB in the four temperature treatments. Hence, comparisons of gene expression will have a higher sensitivity and specificity. |
---|---|
Bibliography: | http://dx.doi.org/10.1007/s00284-008-9096-x ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 ObjectType-Feature-1 |
ISSN: | 0343-8651 1432-0991 |
DOI: | 10.1007/s00284-008-9096-x |