MODELS OF KILONOVA/MACRONOVA EMISSION FROM BLACK HOLE-NEUTRON STAR MERGERS

ABSTRACT Black hole-neutron star (BH-NS) mergers are among the most promising gravitational-wave sources for ground-based detectors, and gravitational waves from BH-NS mergers are expected to be detected in the next few years. The simultaneous detection of electromagnetic counterparts with gravitati...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal Vol. 825; no. 1; p. 52
Main Authors: Kawaguchi, Kyohei, Kyutoku, Koutarou, Shibata, Masaru, Tanaka, Masaomi
Format: Journal Article
Language:English
Published: United States The American Astronomical Society 01-07-2016
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Black hole-neutron star (BH-NS) mergers are among the most promising gravitational-wave sources for ground-based detectors, and gravitational waves from BH-NS mergers are expected to be detected in the next few years. The simultaneous detection of electromagnetic counterparts with gravitational waves would provide rich information about merger events. Among the possible electromagnetic counterparts from BH-NS mergers is the so-called kilonova/macronova, emission powered by the decay of radioactive r-process nuclei, which is one of the best targets for follow-up observations. We derive fitting formulas for the mass and the velocity of ejecta from a generic BH-NS merger based on recently performed numerical-relativity simulations. We combine these fitting formulas with a new semi-analytic model for a BH-NS kilonova/macronova lightcurve, which reproduces the results of radiation-transfer simulations. Specifically, the semi-analytic model reproduces the results of each band magnitude obtained by the previous radiation-transfer simulations within ∼1 mag. By using this semi-analytic model we found that, at 400 Mpc, the kilonova/macronova is as bright as 22-24 mag for cases with a small chirp mass and a high black hole spin, and >28 mag for a large chirp mass and a low black hole spin. We also apply our model to GRB 130603B as an illustration, and show that a BH-NS merger with a rapidly spinning black hole and a large neutron star radius is favored.
Bibliography:ApJ101954
Compact Objects
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0004-637X
1538-4357
DOI:10.3847/0004-637X/825/1/52