A 256-element ultrasonic phased array system for the treatment of large volumes of deep seated tissue

A 256-element phased array has been designed, constructed, and tested for ablative treatment of large focal volumes of deep seated tissue. The array was constructed from a 1.1-MHz, 1-3 composite piezoelectric spherical shell with a 10-cm radius of curvature and a 12-cm diameter. The array was tested...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control Vol. 46; no. 5; pp. 1254 - 1268
Main Authors: Daum, D.R., Hynynen, K.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-09-1999
Institute of Electrical and Electronics Engineers
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 256-element phased array has been designed, constructed, and tested for ablative treatment of large focal volumes of deep seated tissue. The array was constructed from a 1.1-MHz, 1-3 composite piezoelectric spherical shell with a 10-cm radius of curvature and a 12-cm diameter. The array was tested to determine its electroacoustic efficiency and inter-element coupling under high acoustic power conditions. A series of in vivo porcine experiments demonstrated the ability to produce deep seated tissue lesions in thigh muscle using the large scale phased array. The array was used to heat and coagulate tissue volumes >5 cm/sup 3/ in a single ultrasound exposure using multiple foci and temporally scanned power deposition patterns. The spatial and temporal experimental results for large, heated focal volumes correlated very well with the simulated temperature response model for homogeneous tissue. A 25-cm/sup 3/ tissue volume was coagulated in a 90-min period using overlapping large ultrasound exposures.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0885-3010
1525-8955
DOI:10.1109/58.796130