Weighted least-squares approximation of FIR by IIR digital filters
This paper presents a method for the weighted least-squares approximation of finite impulse response (FIR) filters by infinite impulse response (IIR) filters. It is shown, how a solution to this approximation problem can be obtained by solving a related pure least-squares approximation problem. For...
Saved in:
Published in: | IEEE transactions on signal processing Vol. 49; no. 3; pp. 558 - 568 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-03-2001
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a method for the weighted least-squares approximation of finite impulse response (FIR) filters by infinite impulse response (IIR) filters. It is shown, how a solution to this approximation problem can be obtained by solving a related pure least-squares approximation problem. For the latter, we utilize a generalized version of a previously published technique with low computational complexity and guaranteed stability of the IIR filters. Unlike the well-established model-reduction approaches that are carried out in the state space, our method works directly with the numerator and denominator coefficients of the transfer functions. Thus, the influence of finite-precision arithmetic on the results is small. This makes our approach applicable for the approximation of large-order FIR filters and allows the usage of arbitrarily shaped weighting functions. It is shown that our method can successfully be employed to achieve a uniform approximation. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.905880 |