Null mutation of AtCUL1 causes arrest in early embryogenesis in Arabidopsis

The SCF (for SKP1, Cullin/CDC53, F-box protein) ubiquitin ligase targets a number of cell cycle regulators, transcription factors, and other proteins for degradation in yeast and mammalian cells. Recent genetic studies demonstrate that plant F-box proteins are involved in auxin responses, jasmonate...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology of the cell Vol. 13; no. 6; pp. 1916 - 1928
Main Authors: Shen, Wen-Hui, Parmentier, Yves, Hellmann, Hanjo, Lechner, Esther, Dong, Aiwu, Masson, Jean, Granier, Fabienne, Lepiniec, Loïc, Estelle, Mark, Genschik, Pascal
Format: Journal Article
Language:English
Published: United States American Society for Cell Biology 01-06-2002
The American Society for Cell Biology
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The SCF (for SKP1, Cullin/CDC53, F-box protein) ubiquitin ligase targets a number of cell cycle regulators, transcription factors, and other proteins for degradation in yeast and mammalian cells. Recent genetic studies demonstrate that plant F-box proteins are involved in auxin responses, jasmonate signaling, flower morphogenesis, photocontrol of circadian clocks, and leaf senescence, implying a large spectrum of functions for the SCF pathway in plant development. Here, we present a molecular and functional characterization of plant cullins. The Arabidopsis genome contains 11 cullin-related genes. Complementation assays revealed that AtCUL1 but not AtCUL4 can functionally complement the yeast cdc53 mutant. Arabidopsis mutants containing transfer DNA (T-DNA) insertions in the AtCUL1 gene were shown to display an arrest in early embryogenesis. Consistently, both the transcript and the protein of the AtCUL1 gene were found to accumulate in embryos. The AtCUL1 protein localized mainly in the nucleus but also weakly in the cytoplasm during interphase and colocalized with the mitotic spindle in metaphase. Our results demonstrate a critical role for the SCF ubiquitin ligase in Arabidopsis embryogenesis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMCID: PMC117614
Corresponding authors. E-mail addresses: Pascal.Genschik@ibmp-ulp.u-strasbg.fr; Wen-Hui.Shen@ibmp-ulp.u-strasbg.fr.
ISSN:1059-1524
1939-4586
DOI:10.1091/mbc.E02-02-0077