Influence of freezing with liquid nitrogen on whole-knee joint grafts and protection of cartilage from cryoinjury in rabbits
Improving survival rates for sarcoma patients are necessitating more functional and durable methods of reconstruction after tumor resection. Frozen osteoarticular grafts are utilized for joint reconstruction, but the joint may develop osteoarthritic change. We used a frozen autologous whole-rabbit k...
Saved in:
Published in: | Cryobiology Vol. 59; no. 1; pp. 28 - 35 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Netherlands
Elsevier Inc
01-08-2009
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Improving survival rates for sarcoma patients are necessitating more functional and durable methods of reconstruction after tumor resection. Frozen osteoarticular grafts are utilized for joint reconstruction, but the joint may develop osteoarthritic change. We used a frozen autologous whole-rabbit knee joint graft model to investigate the influence of freezing on joint components. Thirty rabbit knee joints that had been directly immersed into liquid nitrogen (L) or saline (C) without use of cryoprotectants were re-implanted. Histological observations were made after 4, 8, and 12
weeks. Both groups had bone healing. In group L, despite restoration of cellularity to the menisci and ligaments, no live chondrocytes were observed and cartilage deterioration progressed over time. It was concluded that cryoinjury of chondrocytes caused osteoarthritic change. Then we tested whether a vitrification method could protect cartilage from cryoinjury. Full-thickness articular cartilage of rabbit knee was immersed into liquid nitrogen with and without vitrification. Histology, ultrastructure, and chondrocyte viability were examined before and after 24
h of culture. Vitrified cartilage cell viability was >85% compared with that of fresh cartilage. Transmission electron microscopy revealed preservation of original chondrocyte structure. Our vitrification method was effective for protecting chondrocytes from cryoinjury. Since reconstructing joints with osteoarticular grafts containing living cartilage avert osteoarthritic changes, vitrification method may be useful for storage of living cartilage for allografts or, in Asian countries, for reconstruction with frozen autografts containing tumors. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0011-2240 1090-2392 |
DOI: | 10.1016/j.cryobiol.2009.04.002 |