Autocrine fibroblast growth factor-2 signaling contributes to altered endothelial phenotype in pulmonary hypertension

Pulmonary vascular remodeling is key to the pathogenesis of idiopathic pulmonary arterial hypertension (IPAH). We recently reported that fibroblast growth factor (FGF)2 is markedly overproduced by pulmonary endothelial cells (P-ECs) in IPAH and contributes significantly to smooth muscle hyperplasia...

Full description

Saved in:
Bibliographic Details
Published in:American journal of respiratory cell and molecular biology Vol. 45; no. 2; pp. 311 - 322
Main Authors: Tu, Ly, Dewachter, Laurence, Gore, Benoit, Fadel, Elie, Dartevelle, Philippe, Simonneau, Gérald, Humbert, Marc, Eddahibi, Saadia, Guignabert, Christophe
Format: Journal Article
Language:English
Published: United States American Thoracic Society 01-08-2011
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pulmonary vascular remodeling is key to the pathogenesis of idiopathic pulmonary arterial hypertension (IPAH). We recently reported that fibroblast growth factor (FGF)2 is markedly overproduced by pulmonary endothelial cells (P-ECs) in IPAH and contributes significantly to smooth muscle hyperplasia and disease progression. Excessive FGF2 expression in malignancy exerts pathologic effects on tumor cells by paracrine and autocrine mechanisms.We hypothesized that FGF2 overproduction contributes in an autocrine manner to the abnormal phenotype of P-ECs, characteristic of IPAH. In distal pulmonary arteries (PAs) of patients with IPAH, we found increased numbers of proliferating ECs and decreased numbers of apoptotic ECs, accompanied with stronger immunoreactivity for the antiapoptotic molecules, B-cell lymphoma (BCL)2, and BCL extra long (BCL-xL) compared with PAs from control patients. These in situ observations were replicated in vitro, with cultured P-ECs from patients IPAH exhibiting increased proliferation and diminished sensitivity to apoptotic induction with marked increases in the antiapoptotic factors BCL2 and BCL-xL and levels of phosphorylated extracellular signal-regulated (ERK)1/2 compared with control P-ECs. IPAH P-ECs also exhibited increased FGF2 expression and an accentuated proliferative and survival response to conditioned P-EC media or exogenous FGF2 treatment. Decreasing FGF2 signaling by RNA interference normalized sensitivity to apoptosis and proliferative potential in the IPAH P-ECs. Our findings suggest that excessive autocrine release of endothelial-derived FGF2 in IPAH contributes to the acquisition and maintenance of an abnormal EC phenotype, enhancing proliferation through constitutive activation of ERK1/2 and decreasing apoptosis by increasing BCL2 and BCL-xL.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1044-1549
1535-4989
DOI:10.1165/rcmb.2010-0317oc