Hyperthermic pre-conditioning protects retinal neurons from N-methyl- d-aspartate (NMDA)-induced apoptosis in rat

Glutamate-induced excitotoxicity is associated with a selective loss of retinal neurons after retinal ischemia and possibly in glaucoma. Since heat shock protein (HSP) 70 is known to play a protective role against ischemic neuronal injury, which is also linked to excitotoxicity, we studied the expre...

Full description

Saved in:
Bibliographic Details
Published in:Brain research Vol. 970; no. 1; pp. 119 - 130
Main Authors: Kwong, Jacky M.K., Lam, Tim T., Caprioli, Joseph
Format: Journal Article
Language:English
Published: London Elsevier B.V 25-04-2003
Amsterdam Elsevier
New York, NY
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glutamate-induced excitotoxicity is associated with a selective loss of retinal neurons after retinal ischemia and possibly in glaucoma. Since heat shock protein (HSP) 70 is known to play a protective role against ischemic neuronal injury, which is also linked to excitotoxicity, we studied the expression of inducible (HSP72) and constitutive (HSC70) forms of HSP70 in apoptosis of retinal ganglion cells (RGCs) after intravitreal injection of 8 nmoles N-methyl- d-aspartate (NMDA), a glutamate receptor agonist. Approximately 18 h after NMDA injection, there were increased numbers of TUNEL-positive cells and cells with elevated HSP72 immunoreactivity in the retinal ganglion cell layer (RGCL), but there were no noticeable changes in HSC70 immunoreactivity. These HSPs positive cells were also Thy-1 positive, a marker for RGCs. Hyperthermic pre-conditioning, which is known to induce HSPs, given 6 or 12 h prior to NMDA injection ameliorated neuronal loss in the RGCL as counted 7 days after NMDA injection but pre-conditioning at 18 h prior to NMDA injection did not have any ameliorative effect. Quercetin, an inhibitor of HSP synthesis, abolished the ameliorative effect of hyperthermic pre-conditioning. Pre-conditioning elevated HSP72 but not HSC70 immunoreactivity and reduced the number of TUNEL-positive cells in the RGCL at 18 h. Our results suggest that intravitreal injection of NMDA induces an up-regulation of HSP72 in a time-dependent manner but not HSC70 in RGCs, indicating a stress response of HSP72 in RGCs and other inner retinal neurons after exposure to NMDA. Hyperthermic pre-conditioning given within a therapeutic window is neuroprotective to the retina against NMDA-induced excitotoxicity, likely by inhibiting apoptosis through the modulation of HSP72 expression.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0006-8993
1872-6240
DOI:10.1016/S0006-8993(03)02298-4