Adaptive Petal Reflector: In-Lab Software Configurable Optical Testing System Metrology and Modal Wavefront Reconstruction

This paper addresses two aspects of the metrology of spherical, petal polymer reflectors which are part of an effort by the European Space Agency (ESA) to develop actively controlled foldable reflectors, enabling larger apertures on CubeSats and small satellites. The first problem is that of measuri...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Vol. 23; no. 17; p. 7316
Main Authors: Nielsen, Carl Johan G., Preumont, André
Format: Journal Article
Language:English
Published: Basel MDPI AG 22-08-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper addresses two aspects of the metrology of spherical, petal polymer reflectors which are part of an effort by the European Space Agency (ESA) to develop actively controlled foldable reflectors, enabling larger apertures on CubeSats and small satellites. The first problem is that of measuring the surface figure error of the spherical reflector alone during the development phase, and to assess the quality before assembling the telescope (large stroke, low accuracy). The SCOTS (Software Configurable Optical Testing System) appears to provide a fast and satisfactory solution to this problem. The second problem is the wavefront error reconstruction when the petal reflector is mounted on the telescope, because parts of the petals are obscured by the secondary mirror, in such a way that the petals appear completely disconnected, making the gradient-based metrology impossible. Using the fact that the petals have common mechanical boundary conditions at the central support ring, the problem is solved by using a set of orthogonal modes satisfying the same boundary conditions. The vibration modes are used for this purpose; the modal amplitudes are reconstructed from slope data outside the obstruction, allowing for wavefront error reconstruction over the entire surface.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1424-8220
1424-8220
DOI:10.3390/s23177316