FT-Raman data analyzed by multivariate and machine learning as a new methods for detection spectroscopy marker of platinum-resistant women suffering from ovarian cancer
The phenomenon of platinum resistance is a very serious problem in the treatment of ovarian cancer. Unfortunately, no molecular, genetic marker that could be used in assigning women suffering from ovarian cancer to the platinum-resistant or platinum-sensitive group has been discovered so far. Theref...
Saved in:
Published in: | Scientific reports Vol. 13; no. 1; p. 20772 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
26-11-2023
Nature Publishing Group Nature Portfolio |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The phenomenon of platinum resistance is a very serious problem in the treatment of ovarian cancer. Unfortunately, no molecular, genetic marker that could be used in assigning women suffering from ovarian cancer to the platinum-resistant or platinum-sensitive group has been discovered so far. Therefore, in this study, for the first time, we used FT-Raman spectroscopy to determine chemical differences and chemical markers presented in serum, which could be used to differentiate platinum-resistant and platinum-sensitive women. The result obtained showed that in the serum collected from platinum-resistant women, a significant increase of chemical compounds was observed in comparison with the serum collected from platinum-sensitive woman. Moreover, a decrease in the ratio between amides vibrations and shifts of peaks, respectively, corresponding to C–C/C–N stretching vibrations from proteins, amide III, amide II, C = O and CH lipids vibrations suggested that in these compounds, structural changes occurred. The Principal Component Analysis (PCA) showed that using FT-Raman range, where the above-mentioned functional groups were present, it was possible to differentiate the serum collected from both analyzed groups. Moreover, C5.0 decision tree clearly showed that Raman shifts at 1224 cm
−1
and 2713 cm
−1
could be used as a marker of platinum resistance. Importantly, machine learning methods showed that the accuracy, sensitivity and specificity of the FT-Raman spectroscopy were from 95 to 100%. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-023-48169-3 |