Dynamic Model of Communicating Hydrocephalus for Surgery Simulation
We propose a dynamic model of cerebrospinal fluid and intracranial pressure regulation. In this model, we investigate the coupling of biological parameters with a 3-D model, to improve the behavior of the brain in surgical simulators. The model was assessed by comparing the simulated ventricular enl...
Saved in:
Published in: | IEEE transactions on biomedical engineering Vol. 54; no. 4; pp. 755 - 758 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
IEEE
01-04-2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose a dynamic model of cerebrospinal fluid and intracranial pressure regulation. In this model, we investigate the coupling of biological parameters with a 3-D model, to improve the behavior of the brain in surgical simulators. The model was assessed by comparing the simulated ventricular enlargement with a patient case study of communicating hydrocephalus. In our model, cerebro-spinal fluid production-resorption system is coupled with a 3-D representation of the brain parenchyma. We introduce a new bi-phasic model of the brain (brain tissue and extracellular fluid) allowing for fluid exchange between the brain extracellular space and the venous system. The time evolution of ventricular pressure has been recorded on a symptomatic patient after closing the ventricular shunt. A finite element model has been built based on a computed tomography scan of this patient, and quantitative comparisons between experimental measures and simulated data are proposed |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
ISSN: | 0018-9294 1558-2531 |
DOI: | 10.1109/TBME.2006.890146 |