Phosphorylation by cAMP-dependent protein kinase is essential for synapsin-induced enhancement of neurotransmitter release in invertebrate neurons

Synapsins are synaptic vesicle-associated phosphoproteins involved in the regulation of neurotransmitter release and synapse formation; they are substrates for multiple protein kinases that phosphorylate them on distinct sites. We have previously found that injection of synapsin into Helix snail neu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cell science Vol. 117; no. Pt 21; pp. 5145 - 5154
Main Authors: Fiumara, Ferdinando, Giovedì, Silvia, Menegon, Andrea, Milanese, Chiara, Merlo, Daniela, Montarolo, Pier Giorgio, Valtorta, Flavia, Benfenati, Fabio, Ghirardi, Mirella
Format: Journal Article
Language:English
Published: England 01-10-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Synapsins are synaptic vesicle-associated phosphoproteins involved in the regulation of neurotransmitter release and synapse formation; they are substrates for multiple protein kinases that phosphorylate them on distinct sites. We have previously found that injection of synapsin into Helix snail neurons cultured under low-release conditions increases the efficiency of neurotransmitter release. In order to investigate the role of phosphorylation in this modulatory action of synapsins, we examined the substrate properties of the snail synapsin orthologue recently cloned in Aplysia (apSyn) for various protein kinases and compared the effects of the intracellular injection of wild-type apSyn with those of its phosphorylation site mutants. ApSyn was found to be an excellent in vitro substrate for cAMP-dependent protein kinase, which phosphorylated it at high stoichiometry on a single site (Ser-9) in the highly conserved domain A, unlike the other kinases reported to phosphorylate mammalian synapsins, which phosphorylated apSyn to a much lesser extent. The functional effect of apSyn phosphorylation by cAMP-dependent protein kinase on neurotransmitter release was studied by injecting wild-type or Ser-9 mutated apSyn into the soma of Helix serotonergic C1 neurons cultured under low-release conditions, i.e. in contact with the non-physiological target neuron C3. In this model of impaired neurotransmitter release, the injection of wild-type apSyn induced a significant enhancement of release. This enhancement was virtually absent after injection of the non-phosphorylatable mutant (Ser-9-->Ala), but it was maintained after injection of the pseudophosphorylated mutant (Ser-9-->Asp). These functional effects of apSyn injection were paralleled by marked ultrastructural changes in the C1 neuron, with the formation of extensive interdigitations of neurite-like processes containing an increased complement of C1 dense core vesicles at the sites of cell-to-cell contact. This structural rearrangement was virtually absent in mock-injected C1 neurons or after injection of the non-phosphorylatable apSyn mutant. These data indicate that phosphorylation of synapsin domain A is essential for the synapsin-induced enhancement of neurotransmitter release and suggest that endogenous kinases phosphorylating this domain play a central role in the regulation of the efficiency of the exocytotic machinery.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0021-9533
1477-9137
DOI:10.1242/jcs.01388