Development and Implementation of a Synchrophasor Estimator Capable of Measurements Under Dynamic Conditions

The classical two-parameter Fourier algorithm for computing synchrophasors is appropriate when the underlying voltage and current waveforms are sinusoids with constant amplitude and phase angle and with a frequency equal to the assumed value. Synchrophasor measurements, however, are applied in power...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery Vol. 23; no. 1; pp. 109 - 123
Main Authors: Premerlani, W., Kasztenny, B., Adamiak, M.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01-01-2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The classical two-parameter Fourier algorithm for computing synchrophasors is appropriate when the underlying voltage and current waveforms are sinusoids with constant amplitude and phase angle and with a frequency equal to the assumed value. Synchrophasor measurements, however, are applied in power systems to track dynamic conditions where, by definition, currents and voltages, though resembling sine-waves, exhibit changes in their magnitudes and vectorial positions. This paper presents a novel algorithm for estimating synchrophasors under such dynamic conditions. In contrast to the classical Fourier algorithm, our model is a complex Taylor expansion, yielding several parameters in the model to be estimated. Four- and six-parameter models are presented corresponding to first and second order Taylor expansions. This paper derives a compensation method for canceling the error in the classical Fourier algorithm that arises under dynamic conditions, shows comparative simulation and test results and describes an efficient implementation. Application of the error cancellation method to other phasor algorithms and extending the technique to higher order Taylor expansions, are discussed. Implementation of synchrophasor measurements on protection and control intelligent electronic devices (IEDs) is discussed, and solutions are presented that allow for secure integration.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0885-8977
1937-4208
DOI:10.1109/TPWRD.2007.910982