Stability Analysis for Delayed Neural Networks Considering Both Conservativeness and Complexity

This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented term...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transaction on neural networks and learning systems Vol. 27; no. 7; pp. 1486 - 1501
Main Authors: Zhang, Chuan-Ke, He, Yong, Jiang, Lin, Wu, Min
Format: Journal Article
Language:English
Published: United States IEEE 01-07-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper investigates delay-dependent stability for continuous neural networks with a time-varying delay. This paper aims at deriving a new stability criterion, considering tradeoff between conservativeness and calculation complexity. A new Lyapunov-Krasovskii functional with simple augmented terms and delay-dependent terms is constructed, and its derivative is estimated by several techniques, including free-weighting matrix and inequality estimation methods. Then, the influence of the techniques used on the conservativeness and the complexity is analyzed one by one. Moreover, useful guidelines for improving criterion and future work are briefly discussed. Finally, the advantages of the proposed criterion compared with the existing ones are verified based on three numerical examples.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
DOI:10.1109/TNNLS.2015.2449898