Evaluating partially observed survival histories: retrospective projection of covariate trajectories
The use of maximum likelihood methods in analysing times to failure in the presence of unobserved randomly changing covariates requires constrained optimization procedures. An alternative approach using a generalized version of the EM‐algorithm requires smoothed estimates of covariate values. Simila...
Saved in:
Published in: | Applied stochastic models and data analysis Vol. 13; no. 1; pp. 1 - 13 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Chichester, UK
John Wiley & Sons, Ltd
01-03-1997
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The use of maximum likelihood methods in analysing times to failure in the presence of unobserved randomly changing covariates requires constrained optimization procedures. An alternative approach using a generalized version of the EM‐algorithm requires smoothed estimates of covariate values. Similar estimates are needed in evaluating past exposures to hazardous chemicals, radiation or other toxic materials when health effects only become evident long after their use. In this paper, two kinds of equation for smoothing estimates of unobserved covariates in survival problems are derived. The first shows how new information may be used to update past estimates of the covariates' values. The second can be used to project the covariates' trajectory from the present to the past. If the hazard function is quadratic in form, both types of smoothing equation can be derived in a closed analytical form. Examples of both types of equation are presented. Use of these equations in the extended EM‐algorithm, and in estimating past exposures to hazardous materials, are discussed. © 1997 by John Wiley & Sons, Ltd. |
---|---|
Bibliography: | ArticleID:ASM289 istex:81D40ABC8E124C4C0630D5C69F25118D0B013E8B NIA - No. PO1 AG08791; No. AG01159 ark:/67375/WNG-P557K0DL-3 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 8755-0024 1099-0747 |
DOI: | 10.1002/(SICI)1099-0747(199703)13:1<1::AID-ASM289>3.0.CO;2-E |