Molecular Regulatory Network of Anthocyanin Accumulation in Black Radish Skin as Revealed by Transcriptome and Metabonome Analysis

To understand the coloring mechanism in black radish, the integrated metabolome and transcriptome analyses of root skin from a black recombinant inbred line (RIL 1901) and a white RIL (RIL 1911) were carried out. A total of 172 flavonoids were detected, and the analysis results revealed that there w...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences Vol. 24; no. 17; p. 13663
Main Authors: Zhang, Jing, Zhang, Zi-Xuan, Wen, Bo-Yue, Jiang, Ya-Jie, He, Xia, Bai, Rui, Zhang, Xin-Ling, Chai, Wen-Chen, Xu, Xiao-Yong, Xu, Jin, Hou, Lei-Ping, Li, Mei-Lan
Format: Journal Article
Language:English
Published: Basel MDPI AG 01-09-2023
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To understand the coloring mechanism in black radish, the integrated metabolome and transcriptome analyses of root skin from a black recombinant inbred line (RIL 1901) and a white RIL (RIL 1911) were carried out. A total of 172 flavonoids were detected, and the analysis results revealed that there were 12 flavonoid metabolites in radish root skin, including flavonols, flavones, and anthocyanins. The relative concentrations of most flavonoids in RIL 1901 were higher than those in RIL 1911. Meanwhile, the radish root skin also contained 16 types of anthocyanins, 12 of which were cyanidin and its derivatives, and the concentration of cyanidin 3-o-glucoside was very high at different development stages of black radish. Therefore, the accumulation of cyanidin and its derivatives resulted in the black root skin of radish. In addition, a module positively related to anthocyanin accumulation and candidate genes that regulate anthocyanin synthesis was identified by the weighted gene co-expression network analysis (WGCNA). Among them, structural genes (RsCHS, RsCHI, RsDFR, and RsUGT75C1) and transcription factors (TFs) (RsTT8, RsWRKY44L, RsMYB114, and RsMYB308L) may be crucial for the anthocyanin synthesis in the root skin of black radish. The anthocyanin biosynthesis pathway in the root skin of black radish was constructed based on the expression of genes related to flavonoid and anthocyanin biosynthesis pathways (Ko00941 and Ko00942) and the relative expressions of metabolites. In conclusion, this study not only casts new light on the synthesis and accumulation of anthocyanins in the root skin of black radish but also provides a molecular basis for accelerating the cultivation of new black radish varieties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms241713663