Survivability of Salmonella Typhimurium (ATCC 14208) and Listeria innocua (ATCC 51742) on lignocellulosic materials for paper packaging

Lignocellulosic materials are widely used for food packaging due to their renewable and biodegradable nature. However, their porous and absorptive properties can lead to the uptake and retention of bacteria during food processing, transportation, and storage, which pose a potential risk for outbreak...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon Vol. 9; no. 3; p. e14122
Main Authors: Zwilling, Jacob D., Whitham, Jason, Zambrano, Franklin, Pifano, Alonzo, Grunden, Amy, Jameel, Hasan, Venditti, Richard, Gonzalez, Ronalds
Format: Journal Article
Language:English
Published: England Elsevier Ltd 01-03-2023
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lignocellulosic materials are widely used for food packaging due to their renewable and biodegradable nature. However, their porous and absorptive properties can lead to the uptake and retention of bacteria during food processing, transportation, and storage, which pose a potential risk for outbreaks of foodborne disease. Thus, it is of great importance to understand how bacteria proliferate and survive on lignocellulosic surfaces. The aim of this research was to compare the growth and survivability of Salmonella Typhimurium and Listeria innocua on bleached and unbleached paper packaging materials. Two different paper materials were fabricated to simulate linerboard from fully bleached and unbleached market pulps and inoculated with each bacterium at high bacterial loads (107 CFU). The bacteria propagated during the first 48 h of incubation and persisted at very high levels (>107 CFU/cm2) for 40 days for all paper and bacterium types. However, the unbleached paper allowed for a greater degree of bacterial growth to occur compared to bleached paper, suspected to be due to the more hydrophobic nature of the unbleached, lignin-containing fibers. Several other considerations may also alter the behavior of bacteria on lignocellulosic materials, such as storage conditions, nutrient availability, and chemical composition of the fibers.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2023.e14122