Collective topo-epitaxy in the self-assembly of a 3D quantum dot superlattice

Epitaxially fused colloidal quantum dot (QD) superlattices (epi-SLs) may enable a new class of semiconductors that combine the size-tunable photophysics of QDs with bulk-like electronic performance, but progress is hindered by a poor understanding of epi-SL formation and surface chemistry. Here we u...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials Vol. 19; no. 1; pp. 49 - 55
Main Authors: Abelson, Alex, Qian, Caroline, Salk, Trenton, Luan, Zhongyue, Fu, Kan, Zheng, Jian-Guo, Wardini, Jenna L., Law, Matt
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 01-01-2020
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epitaxially fused colloidal quantum dot (QD) superlattices (epi-SLs) may enable a new class of semiconductors that combine the size-tunable photophysics of QDs with bulk-like electronic performance, but progress is hindered by a poor understanding of epi-SL formation and surface chemistry. Here we use X-ray scattering and correlative electron imaging and diffraction of individual SL grains to determine the formation mechanism of three-dimensional PbSe QD epi-SL films. We show that the epi-SL forms from a rhombohedrally distorted body centred cubic parent SL via a phase transition in which the QDs translate with minimal rotation (~10°) and epitaxially fuse across their {100} facets in three dimensions. This collective epitaxial transformation is atomically topotactic across the 10 3 –10 5 QDs in each SL grain. Infilling the epi-SLs with alumina by atomic layer deposition greatly changes their electrical properties without affecting the superlattice structure. Our work establishes the formation mechanism of three-dimensional QD epi-SLs and illustrates the critical importance of surface chemistry to charge transport in these materials. A structural investigation on the formation of 3D superlattices of colloidal PbSe quantum dots reveals a topotactic transition from the self-assembled phase of ligand-capped quantum dots to the epitaxially fused phase typical of conductive solids.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1476-1122
1476-4660
DOI:10.1038/s41563-019-0485-2