FBS-based cryoprotective compositions for effective cryopreservation of gut microbiota and key intestinal microorganisms

The need for innovative techniques to preserve microbiota for extended periods, while maintaining the species composition and quantitative balance of the bacterial community, is becoming increasingly important. To address this need, we propose an efficient approach to cryopreserve human gut microbio...

Full description

Saved in:
Bibliographic Details
Published in:BMC research notes Vol. 17; no. 1; pp. 168 - 7
Main Authors: Zalomova, Lyubov V, Fesenko, Jr, Eugeny E
Format: Journal Article
Language:English
Published: England BioMed Central Ltd 19-06-2024
BioMed Central
BMC
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The need for innovative techniques to preserve microbiota for extended periods, while maintaining the species composition and quantitative balance of the bacterial community, is becoming increasingly important. To address this need, we propose an efficient approach to cryopreserve human gut microbiota using a two-component cryoprotective composition comprising fetal bovine serum (FBS) and 5% dimethyl sulfoxide (DMSO). Fetal serum is a commonly utilized component in the freezing media for eukaryotic cells, however, its effects on prokaryotic cells have not been extensively researched. In our study, we demonstrated the high efficiency of using a two-component cryoprotective medium, FBS + 5% DMSO, for cryopreservation of human gut microbiota using three different methods. According to the obtained results, the intact donor microbiota was preserved at a level of 85 ± 4% of the initial composition based on fluorescent analysis using the LIVE/DEAD test. No differences in survival were observed when comparing with pure DMSO and FBS media. The photometric measurement method for growth of aerobic bacteria (A. johnsoni), facultative anaerobes (E. coli, E. faecalis), microaerophilic (L. plantarum), and obligate anaerobic bacterial cultures (E. barkeri, B. breve) also demonstrated high viability rates of 94-98% in the two-component protective medium, reaching intact control levels. However, for anaerobic microflora representatives, serum proved to be a more suitable cryoprotectant. Also, we demonstrated that using cryoprotective media with 50-75% FBS content is enough to preserve a significant level of bacterial cell viability, from an economic standpoint.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1756-0500
1756-0500
DOI:10.1186/s13104-024-06836-2