Designed to Fail: A Novel Mode of Collagen Fibril Disruption and Its Relevance to Tissue Toughness

Collagen fibrils are nanostructured biological cables essential to the structural integrity of many of our tissues. Consequently, understanding the structural basis of their robust mechanical properties is of great interest. Here we present what to our knowledge is a novel mode of collagen fibril di...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal Vol. 102; no. 12; pp. 2876 - 2884
Main Authors: Veres, Samuel P., Lee, J. Michael
Format: Journal Article
Language:English
Published: United States Elsevier Inc 20-06-2012
Biophysical Society
The Biophysical Society
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Collagen fibrils are nanostructured biological cables essential to the structural integrity of many of our tissues. Consequently, understanding the structural basis of their robust mechanical properties is of great interest. Here we present what to our knowledge is a novel mode of collagen fibril disruption that provides new insights into both the structure and mechanics of native collagen fibrils. Using enzyme probes for denatured collagen and scanning electron microscopy, we show that mechanically overloading collagen fibrils from bovine tail tendons causes them to undergo a sequential, two-stage, selective molecular failure process. Denatured collagen molecules—meaning molecules with a reduced degree of time-averaged helicity compared to those packed in undamaged fibrils—were first created within kinks that developed at discrete, repeating locations along the length of fibrils. There, collagen denaturation within the kinks was concentrated within certain subfibrils. Additional denatured molecules were then created along the surface of some disrupted fibrils. The heterogeneity of the disruption within fibrils suggests that either mechanical load is not carried equally by a fibril's subcomponents or that the subcomponents do not possess homogenous mechanical properties. Meanwhile, the creation of denatured collagen molecules, which necessarily involves the energy intensive breaking of intramolecular hydrogen bonds, provides a physical basis for the toughness of collagen fibrils.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2012.05.022