Commissioning Test Results of Variable-Temperature Helium Refrigerator/Liquefier for NIFS Superconducting Magnet Test Facility

The superconducting magnet test facility in the National Institute for Fusion Science has been upgraded for excitation tests at a wide temperature range and a higher magnetic field of 13 T. As part of the upgrade, the helium refrigerator/liquefier that operated for 24 years was replaced with a varia...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on applied superconductivity Vol. 26; no. 3; pp. 1 - 4
Main Authors: Hamaguchi, S., Iwamoto, A., Takahata, K., Takada, S., Imagawa, S., Mito, T., Moriuchi, S., Oba, K., Takami, S., Higaki, H., Kumaki, T., Nadehara, K.
Format: Journal Article
Language:English
Published: New York IEEE 01-04-2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The superconducting magnet test facility in the National Institute for Fusion Science has been upgraded for excitation tests at a wide temperature range and a higher magnetic field of 13 T. As part of the upgrade, the helium refrigerator/liquefier that operated for 24 years was replaced with a variable-temperature helium refrigerator/liquefier. The required liquefaction rate is 250 L/h, and the required refrigeration capacity is 600 W at 4.5 K, same as the previous one. In addition, it has a new feature that can supply helium gas of a wide temperature range. The typical design cooling capacity is 1 kW under the condition of 20-K supply/30-K return and 1.5 kW under the condition of 40-K supply/50-K return. After the replacement, a series of commissioning tests were performed under the various operational conditions. From the results, the satisfactory thermodynamic performance was confirmed. In the future, it is expected that the substantial progress will be made in the development of large-scale superconducting magnets with advanced superconductors such as high-temperature superconductors and MgB2. The design of the variable-temperature helium refrigerator/liquefier and the results of the commissioning tests are reported in detail.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2016.2525935