Long-term record of aerosol optical properties and chemical composition from a high-altitude site (Manora Peak) in Central Himalaya

A long-term study, conducted from February 2005 to July 2008, involving chemical composition and optical properties of ambient aerosols from a high-altitude site (Manora Peak: 29.4° N, 79.5° E, ~1950 m a.s.l.) in the central Himalaya is reported here. The total suspended particulate (TSP) mass conce...

Full description

Saved in:
Bibliographic Details
Published in:Atmospheric chemistry and physics Vol. 10; no. 23; pp. 11791 - 11803
Main Authors: Ram, K, Sarin, M M, Hegde, P
Format: Journal Article
Language:English
Published: Katlenburg-Lindau Copernicus GmbH 13-12-2010
Copernicus Publications
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A long-term study, conducted from February 2005 to July 2008, involving chemical composition and optical properties of ambient aerosols from a high-altitude site (Manora Peak: 29.4° N, 79.5° E, ~1950 m a.s.l.) in the central Himalaya is reported here. The total suspended particulate (TSP) mass concentration varied from 13 to 272 μg m−3 over a span of 42 months. Aerosol optical depth (AOD) and TSP increase significantly during the summer (April–June) due to increase in the concentration of mineral dust associated with the long-range transport from desert regions (from the middle-East and Thar Desert in western India). The seasonal variability in the carbonaceous species (EC, OC) is also significantly pronounced, with lower concentrations during the summer and monsoon (July–August) and relatively high during the post-monsoon (September–November) and winter (December–March). On average, total carbonaceous aerosols (TCA) and water-soluble inorganic species (WSIS) contribute nearly 25 and 10% of the TSP mass, respectively. The WSOC/OC ratios range from 0.36 to 0.83 (average: 0.55 ± 0.15), compared to lower ratios in the Indo-Gangetic Plain (range: 0.35–0.40), and provide evidence for the enhanced contribution from secondary organic aerosols. The mass fraction of absorbing EC ranged from less than a percent (during the summer) to as high as 7.6% (during the winter) and absorption coefficient (babs, at 678 nm) varied between 0.9 to 33.9 Mm−1 (1 Mm−1=10−6 m−1). A significant linear relationship between babs and EC (μgC m−3) yields a slope of 12.2 (± 2.3) m2 g−1, which is used as a measure of the mass absorption efficiency (σabs) of EC.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-10-11791-2010