Extracellular Polymeric Substances and Biocorrosion/Biofouling: Recent Advances and Future Perspectives
Microbial cells secrete extracellular polymeric substances (EPS) to adhere to material surfaces, if they get in contact with solid materials such as metals. After phase equilibrium, microorganisms can adhere firmly to the metal surfaces causing metal dissolution and corrosion. Attachment and adhesio...
Saved in:
Published in: | International journal of molecular sciences Vol. 23; no. 10; p. 5566 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
16-05-2022
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microbial cells secrete extracellular polymeric substances (EPS) to adhere to material surfaces, if they get in contact with solid materials such as metals. After phase equilibrium, microorganisms can adhere firmly to the metal surfaces causing metal dissolution and corrosion. Attachment and adhesion of microorganisms via EPS increase the possibility and the rate of metal corrosion. Many components of EPS are electrochemical and redox active, making them closely related to metal corrosion. Functional groups in EPS have specific adsorption ability, causing them to play a key role in biocorrosion. This review emphasizes EPS properties related to metal corrosion and protection and the underlying microbially influenced corrosion (MIC) mechanisms. Future perspectives regarding a comprehensive study of MIC mechanisms and green methodologies for corrosion protection are provided. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms23105566 |