Titration of Androgen Signaling: How Basic Studies Have Informed Clinical Trials Using High-Dose Testosterone Therapy in Castrate-Resistant Prostate Cancer
Since the Nobel Prize-winning work of Huggins, androgen ablation has been a mainstay for treatment of recurrent prostate cancer. While initially effective for most patients, prostate cancers inevitably develop the ability to survive, grow, and metastasize further, despite ongoing androgen suppressio...
Saved in:
Published in: | Life (Basel, Switzerland) Vol. 11; no. 9; p. 884 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI AG
27-08-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Since the Nobel Prize-winning work of Huggins, androgen ablation has been a mainstay for treatment of recurrent prostate cancer. While initially effective for most patients, prostate cancers inevitably develop the ability to survive, grow, and metastasize further, despite ongoing androgen suppression. Here, we briefly review key preclinical studies over decades and include illustrative examples from our own laboratories that suggest prostate cancer cells titrate androgen signaling to optimize growth. Such laboratory-based studies argue that adaptations that allow growth in a low-androgen environment render prostate cancer sensitive to restoration of androgens, especially at supraphysiologic doses. Based on preclinical data as well as clinical observations, trials employing high-dose testosterone (HDT) therapy have now been conducted. These trials suggest a clinical benefit in cancer response and quality of life in a subset of castration-resistant prostate cancer patients. Laboratory studies also suggest that HDT may yet be optimized further to improve efficacy or durability of response. However, laboratory observations suggest that the cancer will inevitably adapt to HDT, and, as with prior androgen deprivation, disease progression follows. Nonetheless, the adaptations made to render tumors resistant to hormonal manipulations may reveal vulnerabilities that can be exploited to prolong survival and provide other clinical benefits. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 These authors contributed equally to this work. |
ISSN: | 2075-1729 2075-1729 |
DOI: | 10.3390/life11090884 |