Analysis of land use/ land cover changes and landscape fragmentation in the Baro-Akobo Basin, Southwestern Ethiopia

This study investigated the relationship between land use/land cover (LULC) changes and forested landscape fragmentation in the southwestern region of Ethiopia. Satellite images from 1986, 2002 and 2019 were collected and analyzed using standard procedures in ERDAS 2015 software. Fragstat 4.2.1 soft...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon Vol. 10; no. 7; p. e28378
Main Authors: Mulatu, Kassahun, Hundera, Kitesa, Senbeta, Feyera
Format: Journal Article
Language:English
Published: England Elsevier Ltd 15-04-2024
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigated the relationship between land use/land cover (LULC) changes and forested landscape fragmentation in the southwestern region of Ethiopia. Satellite images from 1986, 2002 and 2019 were collected and analyzed using standard procedures in ERDAS 2015 software. Fragstat 4.2.1 software was utilized to assess landscape fragmentation by examining a raster datasets derived from the classified LULC map over the research period. The study identified seven LULC classes in the study area. Findings revealed a substantial reduction in shrubland by 46.3%, dense forest by 23.75%, open forest by 17.3%, and wetland by 32.63%, while cropland increased by 38.06%, agroforestry by 20.29%, and settlements by 163.8% during the study period. These changes varied across different agroecological zones and slope gradients. Landscape metrics results indicated an increase in the number of patches and patch density for all LULC classes, demonstrating significant fragmentation of the landscape. The largest patch index, mean patch areas, and the percentage of landscape occupied by open forest, dense forest, shrubland, and wetland declined as a result of conversion to cropland, agroforestry, and settlement. Conversely, the largest patch index, the mean patch area and the percentage of the landscape occupied by agroforestry, cropland and settlement increased, indicating their increasing dominance in the landscape over the study periods. The findings highlighted the potential deleterious impacts of ongoing land use change and fragmentation on the environment, ecosystem function and local livelihoods. Therefore, it is crucial to implement appropriate conservation efforts and sustainable land management practices to mitigate the rapid change and fragmentation of land use and its negative impacts on sub-watershed ecosystems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2405-8440
2405-8440
DOI:10.1016/j.heliyon.2024.e28378