MXenes-A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications

A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variet...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Vol. 11; no. 12; p. 3412
Main Authors: Pogorielov, Maksym, Smyrnova, Kateryna, Kyrylenko, Sergiy, Gogotsi, Oleksiy, Zahorodna, Veronika, Pogrebnjak, Alexander
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 16-12-2021
MDPI
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new class of two-dimensional nanomaterials, MXenes, which are carbides/nitrides/carbonitrides of transition and refractory metals, has been critically analyzed. Since the synthesis of the first family member in 2011 by Yury Gogotsi and colleagues, MXenes have quickly become attractive for a variety of research fields due to their exceptional properties. Despite the fact that this new family of 2D materials was discovered only about ten years ago, the number of scientific publications related to MXene almost doubles every year. Thus, in 2021 alone, more than 2000 papers are expected to be published, which indicates the relevance and prospects of MXenes. The current paper critically analyzes the structural features, properties, and methods of synthesis of MXenes based on recent available research data. We demonstrate the recent trends of MXene applications in various fields, such as environmental pollution removal and water desalination, energy storage and harvesting, quantum dots, sensors, electrodes, and optical devices. We focus on the most important medical applications: photo-thermal cancer therapy, diagnostics, and antibacterial treatment. The first results on obtaining and studying the structure of high-entropy MXenes are also presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:2079-4991
2079-4991
DOI:10.3390/nano11123412